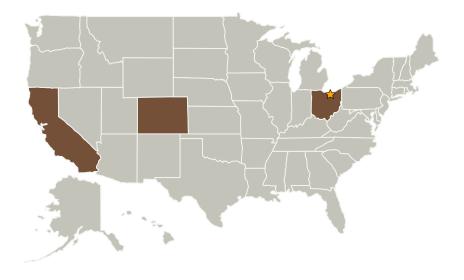
Deep Space Cryogenic Power Electronics, Phase I



Completed Technology Project (2005 - 2005)

Project Introduction

Technology Application, Inc. (TAI) is proposing to demonstrate feasibility of implementing silicon germanium (SiGe) strained-gate technology in the power complementary metal oxide semiconductor field effect transistor (CMOSFET) and logic devices for a logic and power transistor controller for space-approved stepper motors at cryogenic temperature. Power electronic systems contain digital and analog circuits, and the increasing complexity of these systems required for deep space missions and naval electric-powered propulsion requires a new approach in material and processes to operate efficiently at cryogenic temperature. The metal oxide semiconductor field effect transistor (MOSFET) is the building block for both digital and analog circuits. Silicon (Si) is a good material for fabricating power MOSFET and electronic devices for operation from 300 K to 77 K. Devices made from Si suffer from carrier freeze-out below 77 K. Silicon carbide (SiC) is another material suitable for power switch transistors; however, SiC deivices suffer from carrier freeze-out at temperature higher than that of Si. SiGe heterostructure bipolar transistor (HBT) devices are good candidates for low temperature operation. However, SiGe HBT devices suffer changes in characteristics as the operating temperature gets colder. SiGe HBT device switching waveform of a dc-dc converter became distorted below 120 K.

Primary U.S. Work Locations and Key Partners

Deep Space Cryogenic Power Electronics, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Deep Space Cryogenic Power Electronics, Phase I

Completed Technology Project (2005 - 2005)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio
Technology	Supporting	Industry	Boulder,
Applications, Inc.	Organization		Colorado

Primary U.S. Work Locations		
California	Colorado	
Ohio		

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigators:

Thomas E Carroll Ben Nguyenphu

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

